

AEGIS BALLISTIC MISSILE DEFENSE

"Custos Custodum Ipsorum" Guard of the Guardians, Themselves

Computational Analysis of Vehicle Break-up

Ryan Kupchella, Matthew Kurzen, Anne Algoso Corvid Technologies

> Wayne Montag, Mike Neuenhoff Defense Engineering Solutions,

April 2nd, 2013

Approved for Public Release 13-MDA-7216 (18 Mar 13)

Outline

Analysis Overview

- Problem Description
- Objective
- Numerical Approach
 - Eulerian Formulation
 - Lagrangian Formulation
- Discretization
- FTS Deployment
 - LSC Cutting Action
 - Pressure Release
- Debris Formation
- Flydown
- Concluding Remarks

Analysis Overview

Flight Termination System (FTS):

- Used to cut thrust when vehicle control has been lost
- Linear Shape Charge (LSC) used to cut a hole in the motor dome

- Exhaust gases escape through the forward end of the motor
- Zero thrust achieved

Aeais BMD

- Escaping gases launch detached portion of motor dome forward
- Exhaust gases pressurize the vehicle structure
- Vehicle break-up ensues

Analysis Overview

Objective:

Aeais BMD

- Simulate FTS initiation with LSC assembly
- Predict debris formation resulting from
 - Break-up of motor casing
 - Impact of motor dome fragments on other vehicle components
 - Exhaust gas pressure
- Determine debris footprint after flydown

Numerical Approach

Aegis BMD

Eulerian (Pressurized Exhaust Gas)

- Large deformations w/out mesh tangling
- Material interfaces not tracked precisely
- Breaks down late in time (~1 millisecond)
- Relatively computationally expensive

Lagrangian (Vehicle Structure)

- Computationally efficient
- Precise material interfaces
- Well suited for late-time analysis (seconds)
- Mesh entanglement issues (cell deletion)

<u>SPH</u> (Vehicle Fragments and LSC)

- Mesh-free Lagrangian (no entanglement)
- Continuum of "neighboring" particles

Simulation Requires Coupling of All Three Numerical Techniques

Numerical Approach

Aegis BMD

Limitation of Traditional Lagrangian Solvers:

- Severe deformation causes mesh entanglement
- Requires element deletion to stabilize numerics
 - Violates Conservation Laws

Solution Using Advanced Numerics:

- Convert highly deformed elements to particles that carry the same mass/momentum
 - Obeys Conservation Laws

Inclusion of SPH Allows Lagrangian Calculation to Obey Conservation Laws

Discretization

- Aegis BMD
- Lagrangian mesh generated from 3D CAD
 - Hexahedral elements
 - Structural features simplified to remove unimportant details and improve mesh uniformity
 - Average element edge length: 3mm
- Eulerian mesh generated during analysis using adaptive mesh refinement (AMR)
 - Domain includes entire vehicle
 - Flooding routine used to pressurize the rocket motor
- SPH particles generated as needed
 - All SPH particles are generated using an element conversion routine in this case

Discretization

Aegis BMD

Total Lagrangian Element Count: 13,562,816

FTS Deployment

Aegis BMD

- LSC detonated at max pressure
- Dual detonators are modeled
- SPH particles used to approximate LSC cutting action
- After chamber material is cut, pressure escapes, generating debris

FTS Deployment

Aegis BMD

Time=0.00399

FTS Deployment

Debris Formation

Flydown: Trajectories

- Notional vehicle and debris trajectories
- 6 DOF rigid body dynamics solver used to calculate trajectories
- Forces and moments calculated from atmospheric properties, debris state, detailed geometry, and fast-running aero model

Flydown: Hazardous Debris

- Vehicle break-up and debris flydown successfully simulated
- Coupled interactions between vehicle structure and propellant gas modeled with coupled Lagrangian/Eulerian framework
- Assumed the majority of the damage results from pressure release
- Future work

eais BM

- Temperature effects
- Solid fuel debris