Net-centric Weapons Test and Evaluation Environment (NCWTEE)

International Test and Evaluation Association
System-of-Systems Engineering Workshop

Jason Lucas
96 TW/TSSQ
850-882-8028
jason.lucas@us.af.mil

Case Number: 96TW-2015-0020
• What is NCWTEE:
 – NCWTEE implements realistically-limited (bandwidth/segment/line-of-sight) data link behaviors to assess performance of net-enabled weapons

• Why the warfighter needs NCWTEE:
 – In current operations, multiple users share the same data link ‘space’
 – However, as a result of current technology and resources, current system of system testing assumes away the degradations resulting from sharing this data link space
 – Weapon system effectiveness therefore remains an unknown until the warfighter is actually engaged in the battle space, particularly when multiple weapons are employed
 – NCWTEE mitigates this issue by giving testers the ability to add interference into the test environment, thus making it more realistic and more representative of the modern battle space
Net-centric Weapon (NCW) CONOPS

Aircraft (AC): F-15E/FA-18/JSF

UHF

Link-16

Net-Centric Weapon (NCW)

Other Net Subscribers (Competing for Net Resources)

JTAC

A

B

C

D

E

Distribution Statement A:

Asynchronous Update

Strike Aircraft Acquires Target

Strike Aircraft Releases Weapon

In-flight Target Updates (IFTU) to Weapon

Weapon Acquires & Guides to Target

Weapon End-game & Bomb Hit Indication (BHI)
How is Link 16 Used in Battle?

Distribution Statement A:
How Do We Test It?

Live RF Link 16

Net
10
9
8
7
6
5
4
3
2
1
0
NCWTEE Brings the Combat Environment To Test

In Combat, Messages May or May Not be Tx/Rx Due to:
- Line-of-sight
- Timeslot Buffering / Bandwidth
- Transmit Range
- Multiple messages / timeslot
- etc

NCWTEE implements realistically-limited (bandwidth/segment/line-of-sight) data link behaviors to assess the performance of multiple net-enabled weapons

Distribution Statement A:
Interoperability

• Three Levels of Interoperability Testing
 – Correlate to the OSI Reference Model
• Application Layer - Current Distributed Test Ops
 – How well do the systems interact at the data message level?
 – Typically uses Deterministic Communication Methods (JREAP-C)
• Transport Layer - NCWTEE Distributed Test Ops
 – How robust are the systems when using the operational transport methods – TDMA, etc
• Operational Layer - NCWTEE Distributed Test Ops
 – How does the system operate within the constraints of the GIG?
 – Multiple Systems, Multiple Weapons, Contention Access, Limited Bandwidth at the tactical edge
 – Loosely Correlates to Joint Test

OSI - Open System Interconnection
JREAP – Joint Range Extension Application Protocol
Description

- Distributed engineering-level capability to assess NCW SoS kill-chain performance due to communication behavior and sensor impacts

Key Characteristics

- Scalable mix of statistical and engineering level Link-16 and UHF distributed network behavior emulations that can represent complex RF environments and emulate waveform behavior with varying fidelity
- Scene generation capability that provides sensor models with common hi-fidelity Imaging Infrared (I2R) stimulation

Develops Three (3) Core Capabilities

1. **Link-16 Emulation (Aircraft to Weapons Communications)**
 - Real-time distributed engineering level Link-16 emulation to augment current JRE approach
 - Develops emulated Link-16 network environment and integrates Link-16 terminal emulations
 - Uses distributed architecture (JMETC)
 - Integrated with contractor provided platform simulations

2. **Tactical Radio / CNR Emulation (JTAC to Weapon Communications)**
 - Real-time distributed engineering level Combat Net Radio emulation to augment current JRE approach
 - Develops emulated Tactical Radio network environment and integrates Tactical Radio terminal emulations
 - Uses distributed architecture (JMETC)
 - Integrated with contractor provided platform simulations

3. **Scene Generation (Sensor Simulation/Stimulation)**
 - Real-time local scene generation providing distributed synchronized scenes to digital sensor models or hardware
 - Develops distributed architecture enhancements for scene generation node communication
 - Pre-event source data
 - Real-time target TSPI (TENA)
 - Leverages existing CTEIP capability (JDIGS TENA LROM)
 - Integrated with contractor provided platform simulations

NCWTEE Leverages Best-of-Breed Advances in GOTS/COTS Capabilities

Distribution Statement A:
Link-16 Desktop Analysis

Link 16 Characterization Example from Enhanced Solution Phase

- Operational Latency (Over-the-Air)
- NCWTEE Latency (test network and computer processing latency)
 - Centralized Approach (Single Server – Distributed Processing)
 - Decentralized Approach (Distributed Servers at each site – Local Processing)

Distributed Test Latency is NOT a factor for NCWTEE
Project Scope / Representative Interfaces

EMANE based Node with Link 16 & CNR Modules

Green – Existing
Yellow – Modified/upgraded
Red – Need to be Developed

Net Centric Weapons T&E Environment
NCWTEE Deliverables

Link 16 & Combat Net Radio
- Server Stack & Networking Equip to Link to JMETC
- RF Behavior Engine
 - Line-of-sight
 - Timeslot Buffering / Bandwidth
 - Transmit Range
 - Antenna Patterns, Etc
 - F-35 & Net Weapon sim for V&V
 - F-18 / F-15 sims already exist

Scene Generation
- Scene Generators (Workstation with high-end graphics cards)
- IIR Interface to Software Seeker
- Networking Equip to Link to JMETC
- Weapon models for V&V

Data Link DRFM Technology (DLDT)
- 6 Data Link DRFMs (3 DLDTs)

* Software Only
Link 16/CNR Emulation VV&A

- **VV&A Goal**: Demonstrate NCWTEE Link 16/CNR Emulation represents L16/CNR Open Air Environment
 - TDMA, Terrain, Attenuation, RF effects, etc.
 - Distributed environment
- **Process**
 - Initialize Lab and NCWTEE environments with operationally representative NDL, OPTASKLINK and CCIF data files
 - Leverage RF effects and lab data (Message validity and TDMA)
 - Output comparisons drive reassessment, reprioritization and correction, as needed

Impact: Emulates net-enabled weapon message and standard messages from any number of Link 16/CNR entities

- Validation – accurate representation of real world
- Verification – accurate representation of NCWTEE conceptual description and specs
VV&A Goal

• Weapon environment VV&A’d for the purpose of testing systems supporting planning data flow
 – Supports Developmental Test
 – Supports Operational Test
Summary

- NCWTEE supports early testing
 - System of System components
- NCWTEE adds realistic battlespace environment
- NCWTEE reduces risk prior to open air testing