Challenges in Validating Complex Large-Scale Simulations for Operational Test

Karl Kuschner, Ph.D. (IDA)
Jay Smith, Ph.D. (JOTT)
Ben Lambert, Ph.D. (JOTT)
Jeremy Smith (JPO/NAVAIR)
Background

- Need for these sims
 - Cost and limitations of live testing

- Intended use
 - Missions
 - Data collection
 - Number of trials

- Major requirements
 - Operational Flight Program (OFP)-in-the-loop
 - Man-in-the-loop threats
Example Synthetic Environment

- **Comm**
 - Datalinks
 - Radios

- **Air System**
 - Air Vehicle
 - Sensors (e.g. Radar)
 - PVI

- **Threat A/C**
 - RCS
 - Air Vehicle
 - Radar

- **Environment**
 - RF, IR, weather,
 - Visual, terrain
 - MSDB

- **Weapons**

- **Surface threats and ground targets**
 - including RF, IR, visual

RCS – Radar Cross Section
RF – Radio Frequency
IR – Infrared
MSDB – Multi-Spectral Database
PVI – Pilot- Vehicle Interface
Federations of Models

- Various environments
- Tying together with open interfaces
Early Validation Issues

- Typical issues encountered
 - User expectations
 - Sim instrumentation
 - Flight test data issues
 - Data tools
 - Model tuning
Accreditation Approach

- Accreditation challenges
 - Sim to be used to answer mission-level questions
 - Was the aircraft able to meet the Commander’s intent?
 - What was the blue:red kill ratio?
 - Sim to be used in mission threat scenarios outside of that available on open-air ranges
 - Available mission-level V&V reference data limited
 - Different factors important to executing low-end (open-air) scenarios versus high-end (simulator) scenarios
Accreditation Approach

- How will Sim be accredited for the intended use?
 - Require detailed V&V to be conducted at the ‘component’ and ‘system’ level to assess risk of use at the mission level.
 - Accreditation risk would be a roll-up of risks at the component and system levels.
Mission Decomposition

Mission Level:
- Mission Metric: Defensive Counter Air (DCA)
 - Proportion of Red Strikers that do not reach their Weapons Release Point

System Level:
- Interaction Metric: Air-Air Kill Chain
 - Track
- Link Metric: System Track
 - Accuracy
- Component Metric: Radar
 - Multi-Target Track (MTT)
 - Track
 - Accuracy
Accreditation Methodology

- Accreditation split into 3 parts:

<table>
<thead>
<tr>
<th>Assess risk based on sensitivity and occurrence</th>
<th>• How important is the validation metric to mission-level evaluations?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess risk based on the size of the performance difference</td>
<td>• Is there a tactical impact?</td>
</tr>
<tr>
<td>Assess risk based on ability to mitigate</td>
<td>• Can model be fixed, tweaked, or re-tuned?</td>
</tr>
<tr>
<td></td>
<td>• Can the risk be reduced by limiting the scope of the intended use?</td>
</tr>
</tbody>
</table>
Mission Interactions

<table>
<thead>
<tr>
<th>Level</th>
<th>Task</th>
<th>Metric</th>
<th>Questions</th>
</tr>
</thead>
</table>
| Mission-Level | DCA | Proportion of Red Strikers that do not reach their Weapons Release Point | • How sensitive is this mission metric to a performance delta in this system metric?
• How often will this mission metric include this system metric? |
| System-Level | A/A Kill Chain, System Track | System Track Accuracy | • How sensitive is this system metric to a performance difference in this component metric?
• How often will this system metric include this component metric? |
| Component-Level | Radar, Multi-Target Track | Track Accuracy | |
Statistical Approach

- Primarily at Component Level
- Perform a 2-sample non-parametric statistical test to identify if real-world (reference) and sim data could be from the same statistical distribution; minimum data size required
- Null Hypothesis: \(H_0 = \) reference data and sim data come from same distribution
- ‘Pass’ = failed to reject \(H_0 \), and minimum data requirements met; no additional action required (unless users demand further data)
- ‘Fail’ = rejected \(H_0 \)
 - There is a performance difference between reference and sim performance, or failed to meet minimum data requirements
 - Assess potential tactical impact, and mitigation options
Value of Validation Test Design

- Structured engineering approach to VV&A
 - Accreditation Plan and V&V Plan interlinked
- Individual component, system, and mission test designs
 - Measures (detection range, false alarm rate, …)
 - Conditions (altitude, RCS, …)
 - Levels (high/low, large/small, …)
- VTDs provided reference matrix for ‘data miners’ to fill
 - Levels purposefully vague to maximize chances of finding suitable reference data
 - Gaps in reference data availability easily identified
Detailed V&V Plans

- The V&V plan focuses on:
 - How to determine what V&V needs to be done?
 - What V&V needs to be done?
 - What is needed in order to do the V&V?
 - What might affect V&V team’s ability to do the V&V?

- Detailed V&V plans are critical as they enable assessment of the likelihood of successful accreditation
 - Aids user test planning, and adequate resource allocation
 - When is it likely to be able to be used?
 - For what uses will it likely be capable of being accredited?
 - Enables progress monitoring
 - Will it be ready on time?
 - Demonstrates competency of V&V agent
User Perspective

- Combined V&V and accreditation approach
 - Helps manage expectations
 - Reduces risk of misunderstanding
 - Accreditation often closely aligned with user, who is most knowledgeable on intended use
- Significantly more accreditation/user involvement than planned
- Efficient VV&A process dependent on externals:
 - Networks
 - Personnel
Value of a Government-led V&V

- Developers not validating their own product
 - Ensures separation even for Government-developed models
- Better understanding of intended simulation employment/mission use
- The Government generally has fewer barriers to information access
 - Security
 - Proprietary safeguarding
- Lessons learned can directly benefit future V&V efforts
 - Tools and processes
 - Robust team of subject matter experts
 - Complex organizational connections
Actions to ensure successful V&V

- Identify, pull, and analyze flight test data/reports to characterize real-world performance
- Perform continuous gap analysis – check validation data needs for real-world coverage and attempt to fill gaps
- Develop simulation scenarios
 - Balance efficiency with rigorous replication of flight test as executed
- Analyze simulation data
 - Generate the measures from the test design
- Perform comparative analysis
- Report findings
- Perform accreditation assessment
V&V Issues

- Scarcity of available expertise
 - V&V skills with SME knowledge is rare combination
 - Many projects require similar expertise
- Network connectivity and robustness
- Data
 - Discovery, validity for OT, and usability
- Contracting language and specifications
- Syncing with program schedules
- V&V timeline compression
Path to Overcoming Challenges

- Build and acquire expertise
- Ensure tuning is part of model development
- Plan rigorous V&V effort in detail
- Use enterprise to support V&V
- Stay tightly coupled with stakeholders