Agenda

• Background
 – Removal of Proprietary formats and communications mechanisms
 – Adoption of iNET/RCC Standards

• RCC
 – Chapter Overview

• Hardware
 – Timing and Synchronization
 – TmNS Packets
 – Data Processing

• Software
 – System Management Interfaces
 – Integration with customer hardware
 – Status
 – Quality of Service
Background

• Over the last few years the telemetry industry is moving from PCM to Network based telemetry systems
• To meet market demand companies are increasing their network product portfolio and to satisfy the user base network based solutions must ensure:
 – No loss of functionality from PCM systems
 – Network should increase the capability of the telemetry system

What can be lost from PCM

• PCM Systems have deterministic latency between DAU’s
• PCM Systems are configured through software that has visibility of the complete hierarchy
• Switches, Grandmasters and gateways may increase the number of devices

Potential Gains of Network Telemetry

• DAU’s can have independent sampling schedules to reduce over-sampling
• Data can be processed and cherry picked to produce a simple stream:
 • Low performance devices such as pilot control units
 • Save bandwidth for PCM downlink
• Command and Control techniques allow a system to change it’s configuration
 • Reduce Data – Transmit as needed
 • Support multiple test configurations without landing
• Configuration software can program devices in parallel to reduce configuration time
Removal of Proprietary Formats

- As the complexity of network telemetry increases, vendors must meet the demands with more flexible systems and designs
- Existing systems have traditionally relied upon proprietary formats

Communication Protocol
- Broadcast Status
- Configuration

Data Formats
- Configuration Files
- Status Data
- Packet Format of Telemetry Data

Simplified Block Diagram

- **Configuration Tool**
 - Configuration Logic
 - Loading Logic
 - DDN Configuration
 - DDN Status Query

- **Data Processing**
 - Decom
 - DDN Network Input
 - Data Processing

- **DAU**
 - DDN Input Processing
 - DDN Output Processing
 - DDN Packetizer
 - Scheduler

Programming Interface

- Programming Response
- Status Data in DDN Format

Telemetry Data

- Data Formats
 - Configuration Files
 - Status Data
 - Packet Format of Telemetry Data

Note: L3’s format and protocol is called DDN
Removal of Proprietary Formats

- To meet customer demand proprietary interfaces and formats have been replaced with open standards
 - DDN interfaces have been removed
 - DDN data formats are no longer used
- Configuration technique was abandoned to comply with the iNET methodology

Simplified Block Diagram
Removal of Proprietary Formats

- The new RCC standards for data formats and interfaces have been adopted
- Communication Protocol
 - iNET Configuration Protocol
 - SNMP for status and management
- Data Formats
 - Configuration Files are still proprietary
 - Status SNMP or Telemetry Measurements
 - TmNS format for Telemetry data

Simplified Block Diagram
RCC and iNET Standards

- The previous set of slides is a high level overview of the changes that were implemented to create an interoperable network telemetry system.
- The next set of slides discuss how the standards are integrated.
RCC Chapters

The RCC Chapters 21-28 define the standards for an open interoperable network telemetry system.

The diagram below outlines what is contained in the chapters.

Items in green discuss the standards that will be covered in this presentation.
The RCC Chapters 21-28 define the standards for an open interoperable network telemetry system.

<table>
<thead>
<tr>
<th>Chapter 21</th>
<th>Chapter 22</th>
<th>Chapter 23</th>
<th>Chapter 24</th>
<th>Chapter 25</th>
<th>Chapter 26</th>
<th>Chapter 27</th>
<th>Chapter 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>TmNS System Concepts</td>
<td>Network Access Physical Layer</td>
<td>Schema</td>
<td>TmNS Message</td>
<td>Public RFC Management Resources (SNMP)</td>
<td>Data Channel Characteristics</td>
<td>Data Channel Characteristics</td>
<td></td>
</tr>
<tr>
<td>TmNS Core Technologies</td>
<td>Network Access Data Link Layers</td>
<td>Measurements</td>
<td>RF Network Message</td>
<td>TmNS Specific Management Resources (SNMP)</td>
<td>Metadata – Defined Application Data Transfer</td>
<td>Metadata – Defined Application Data Transfer</td>
<td></td>
</tr>
<tr>
<td>TmNS Definitions</td>
<td>Internet Layers (IPv4, IPv6, Transmission, Multicast, Routing)</td>
<td>Bus Configuration</td>
<td>TSS Messages</td>
<td>Management Resource Matrix</td>
<td>Request Defined Application Data Transfer</td>
<td>Physical Layer</td>
<td></td>
</tr>
<tr>
<td>Relationship between standards and specs</td>
<td>Transport Layer Protocols</td>
<td>Devices</td>
<td></td>
<td>Management Protocols (SNMP, TmNS, HTTP)</td>
<td>RF Burst Format</td>
<td>RF Media Access Control Layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application Layer Protocols</td>
<td>Network Node</td>
<td></td>
<td>Uniform Resource Name URN</td>
<td>RF Media Access Control Frame Structure</td>
<td>Logical Link Control Layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TmNS App Protocols (SNMP, HTTP, RTSP, VOIP, File Transfer, ...)</td>
<td></td>
<td></td>
<td></td>
<td>Power Transients</td>
<td>Tunnel Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality of Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use or disclosure of the data contained on this page is subject to the restrictions on the title page of this presentation.
Timing and Synchronization

• The importance of timing in telemetry can not be understated
• Multi DAU networks must have the capability to:
 – Synchronize time between the devices
 – Synchronize sampling between devices like traditional master/remote PCM systems
• The System Management standard calls out the usage of IEEE-1588 Standard for time synchronization
 – Off the shelf integrated hardware components to reduce R&D costs -> Customer Cost
 – Rely on third party components (switches, grandmaster, etc) to reduce R&D costs
 – Integration with customer hardware is simplified because of open standards
 – Well defined open standards reduce risk for both vendors and customers

What can be lost from PCM

• PCM Systems have deterministic latency between DAU’s
• PCM Systems are configured through software that has visibility of the complete hierarchy
• Switches, Grandmasters and gateways may increase the number of devices
Timing and Synchronization

• Customer Challenge
 – To reduce physical maintenance costs a customer wanted networks separated by wireless communications
 – The devices needed to be synchronized
 – Needed simultaneous sampling across DAU’s
 • Channels on different DAU’s must be synchronized with one another

• IEEE-1588 made implementing the solution rather simple

• These requirements would be difficult to achieve with a traditional PCM system
IEEE-1588 Based System Synchronization

- Customer wanted to use wireless connections which can interfere with IEEE-1588 synchronization
- Solution was to use separate timing systems
 - Separate GPS Time Code Processors independently synchronize separate sub-nets
 - GPS Time code processor in the sub-net area synchronizes the remote DAUs
 - A second GPS Time code processor synchronizes the wired DAUs, data aggregators and PCM generators
 - No loss of timing fidelity
- Using separate time code processors met customer synchronization requirements
 - Verified using 1PPS signals
 - Verified via sampled signal phase analysis
 - Acquired using SS&H techniques
System Wide Simultaneous Sample and Hold

- The ability of IEEE-PTP to synchronize SS&H is instrumental in solving a customer requirement to have synchronize data across DAU’s over a wireless network
 - DAU encoder, sampling schedule and SS&H signals are all synchronized to the PTP subsystem
 - Results in superior phase correlation between any input signal applied to any signal conditioner in any DAU
 - Including DAU’s in remote sub-nets accessible via wireless links

The local time code processor in the remote system ensures the signal conditioners in DAU 6 will be synchronized to DAU 1 and DAU 2

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DAU 1 V1, DAU 2 V1</td>
<td>< 0.1 degrees</td>
</tr>
<tr>
<td>2</td>
<td>DAU 1 V1, DAU 6 V1</td>
<td>< 0.1 degrees</td>
</tr>
</tbody>
</table>
The RCC Chapters 21-28 define the standards for an open interoperable network telemetry system.
TmNS Packets

• The DDN protocol was used by several of our Network Products as a way of transmitting network data
 – DAU’s, Data Combiners, PCM to Network Gateways, Recorders, etc
 – Processing engine and display support

• The DDN Protocol had limitations in the form of
 – No support for 64-bit time
 – Was fixed to packetized PCM

• We saw two choices for supporting future needs
 – Improve DDN to include new features and provide more extensibility
 – Use TmNS

• TmNS was chosen
 – Open Standard which reduces risk for customers
 – Interoperability with the impending iNET Standards
 – Extensibility
 • We could use the vendor specific fields to add quality of service metrics
 • Supported packetized PCM and non PCM based telemetry
 • Support for additional status information to help processing systems
 – TmNS is well designed and documented which reduces our R&D costs vs extending a proprietary format (we would have reinvented the wheel)
Data Processing

- The TmNS packet format has efficient data processing characteristics
- 64bit IEEE-PTP time stamp format
- Time format and package rules help align packets from multiple sources
 - Build time correlated output streams
 - Produce network latency and health statistics
- The application defined fields are used for numerous purposes
 - Time stamps are added to help analyze network performance

<table>
<thead>
<tr>
<th>Message Definition Header</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Message Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Opt Count</td>
<td>Reserved</td>
<td>Type</td>
<td>Message Definition ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sequence Number</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Message Length</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Message Timestamp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Application Defined Fields</td>
<td></td>
</tr>
</tbody>
</table>

The TmNS time stamping rules help data aggregators to efficiently align data

Timestamps are added to monitor network latency
Network Gateway Processing

- **The Network Gateway is a Network to Network Data Processor**
 - TmNS Timestamp rules help produce High Rate Data Aggregation
 - Build a composite output stream
 - Build a smaller cherry picked stream for safety of flight, low power devices, etc
 - Output stream can feed a PCM generation device

- **Network to PCM Gateway**
 - Consumes a single or multiple TmNS Data Stream
 - Outputs a time correlated PCM stream

![Diagram](image-url)
The RCC Chapters 21-28 define the standards for an open interoperable network telemetry system.

<table>
<thead>
<tr>
<th>Chapter 21</th>
<th>Chapter 22</th>
<th>Chapter 23</th>
<th>Chapter 24</th>
<th>Chapter 25</th>
<th>Chapter 26</th>
<th>Chapter 27</th>
<th>Chapter 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>TmNS Core Technologies</td>
<td>Network Access Data Link Layers</td>
<td>Measurements</td>
<td>RF Network Message</td>
<td>TmNS Specific Management Resources (SNMP)</td>
<td>Metadata – Defined Application Data Transfer</td>
<td>Physical Layer</td>
<td>RF Media Access Control Layer</td>
</tr>
<tr>
<td>TmNS Definitions</td>
<td>Internet Layers (IPv4, IPv6, Transmission, Multicast, Routing)</td>
<td>Bus Configuration</td>
<td>TSS Messages</td>
<td>Management Resource Matrix</td>
<td>Request Defined Application Data Transfer</td>
<td>RF Burst Format</td>
<td>Logical Link Control Layer</td>
</tr>
<tr>
<td>Relationship between standards and specs</td>
<td>Transport Layer Protocols</td>
<td>Devices</td>
<td>Uniform Resource Name URN</td>
<td>Management Protocols (SNMP, TmNS, HTTP)</td>
<td>TmNS Message Transfer Rules</td>
<td>RF Media Access Control Frame Structure</td>
<td>Tunnel Management</td>
</tr>
<tr>
<td></td>
<td>Application Layer Protocols</td>
<td>Network Node</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TmNS App Protocols (SNMP, HTTP, RTSP, VOIP, File Transfer, …)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality of Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System Management Interfaces

System Management defines standard MIBs to ensure basic level of functionality amongst network nodes.

The standard MIBs provide access to information that should be readily available to device manufacturers and ensures the usage of common network tools from the commercial industry.

In practice we found that rather than discovering L3 devices we found:
- L3 Network Devices
- Customer Devices
- Other Vendor Devices

This was a value add that we had not initially anticipated:
- The discovery helps the customer to ensure all devices (not just L3) on the test article are powered on and running and rely on this information during pre-flight checkout.
System Management Tools

• TDAS Manager (TDASM) is an L3 developed system management tool
 – Conforms to the System Management standard
 – Provides device discovery and management capabilities including
 • IP Network Configuration
 • Device configuration and control
 – Either individually or in parallel to selected device subsets
 • Alert and notification management

• Scalable Server Design
 – Runs on the Ground Support Computer
 – When no GSC is available, the server runs on any of the red highlighted controllers at the users discretion

TDASM Server

IEEE-1588 Master Time Code Processor & 8-port Ethernet Switch

Ground Support Computer

Network Gateway

DAU 2
End Plate
Controller
Voltage Conditioner
Strain Gauge
Recorder Media
Recorder
Power Supply

DAU 4
End Plate
Controller
Voltage Conditioner
Strain Gauge
Power Supply

DAU 1
End Plate
Controller
PCM Gateway
Voltage Conditioner
Strain Gauge
Power Supply

DAU 3
End Plate
Controller
Video Module
Video Module

Decom/Bitsync

Copyright 2015 L-3 Telemetry-East
Customer Hardware Integration

• Some customers build their own equipment
• System Management Interfaces enable their components to seamlessly integrate with our System Manager tool
 – Reduces cost for the user by making the System Manager the UI for their component
 • Initiate Configuration and display errors
 • Network IP Management
 • Command and Control
 • Alert and Notification displays
 • Discovery
 • Statistics
 – Automatically integrated into the larger telemetry system
 – Reduced training for users by using the same tools for different equipment
• Less risk for the customer because they are building to open standards
Customer Hardware Integration

When customers implement the System Management Interfaces they benefit from automatic software integration

Automatic Integration with the System Manager

When using the same user interface
• Users use the same tool
• Less training
• Less risk
The RCC Chapters 21-28 define the standards for an open interoperable network telemetry system.

<table>
<thead>
<tr>
<th>Chapter 21</th>
<th>Chapter 22</th>
<th>Chapter 23</th>
<th>Chapter 24</th>
<th>Chapter 25</th>
<th>Chapter 26</th>
<th>Chapter 27</th>
<th>Chapter 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>TmNS Core Technologies</td>
<td>Network Access Data Link Layers</td>
<td>Measurements</td>
<td>RF Network Message</td>
<td>TmNS Specific Management Resources (SNMP)</td>
<td>Metadata – Defined Application Data Transfer</td>
<td>Physical Layer</td>
<td>RF Media Access Control Layer</td>
</tr>
<tr>
<td>TmNS Definitions</td>
<td>Internet Layers (IPv4, IPv6, Transmission, Multicast, Routing)</td>
<td>Bus Configuration</td>
<td>TSS Messages</td>
<td>Management Resource Matrix</td>
<td>Request Defined Application Data Transfer</td>
<td>RF Burst Format</td>
<td>Logical Link Control Layer</td>
</tr>
<tr>
<td>Relationship between standards and specs</td>
<td>Transport Layer Protocols</td>
<td>Devices</td>
<td></td>
<td>Management Protocols (SNMP, TmNS, HTTP)</td>
<td>TmNS Message Transfer Rules</td>
<td>RF Media Access Control Frame Structure</td>
<td>Tunnel Management</td>
</tr>
<tr>
<td>TmNS App Protocols (SNMP, HTTP, RTSP, VOIP, File Transfer, …)</td>
<td>Application Layer Protocols</td>
<td>Network Node</td>
<td></td>
<td>Uniform Resource Name URN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TmNS System Concepts

TmNS Core Technologies

TmNS Definitions

Relationship between standards and specs

TmNS App Protocols (SNMP, HTTP, RTSP, VOIP, File Transfer, …)

Quality of Service

Use or disclosure of the data contained on this page is subject to the restrictions on the title page of this presentation.
Status and Quality of Service

- PCM Systems are deterministic systems, in contrast networks are nondeterministic
- Network data packets can be held up or lost
- To monitor the systemic health of the system the RCC standards offer some tools
- System Management Interfaces
 - Statistics for monitoring how much data is transmitted
 - Table of packet errors, data lost
 - Transmission control
- TmNS Packet Format
 - Methodology to avoid UDP Packet Fragmentation
 - Methodology to watch for dropped packets
 - Ability to record ingress and egress timestamps to accurately monitor network latency
Status and QoS Management

The System Management MIB has support for statistics for both sources and sinks.

Data Sink
- `tmnsLTCDDataSink` – Defines the component as a device that can receive data packets.

Data Source
- `tmnsLTCDDataSource` – Defines the device as a data source that can produce UDP traffic.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>txEnable</td>
<td>Start and stop transmission</td>
</tr>
<tr>
<td>txMode</td>
<td>Set whether real or simulated mode (not defined)</td>
</tr>
<tr>
<td>BytesSentTable</td>
<td>Bytes set per destination address and message ID</td>
</tr>
<tr>
<td>tmnsDataMessageSentTable</td>
<td>Messages set per destination address and message ID</td>
</tr>
<tr>
<td>bytesReceivedTable</td>
<td>The number of bytes received by this data source</td>
</tr>
<tr>
<td>tmnsDataMessagesReceivedTable</td>
<td>Messages received per destination address and message ID</td>
</tr>
<tr>
<td>tmnsDataMessagesNotReceivedTable</td>
<td>Messages not received per destination address and message ID</td>
</tr>
</tbody>
</table>

Should equal out
System Latency

- Understanding where latency occurs can help understand Quality of Service (QoS) issues
- Our equipment makes use of the TmNS format’s optional vendor fields
 - Timestamp when Ethernet driver sends packets
 - Timestamp when Ethernet driver receives data
- Our network to network gateway generates measurements based on the transmit and receive timestamps and inserts them into the output telemetry stream

When a packet leaves a DAU a timestamp is inserted into the TmNS Header

When a packet arrives at an NPA or NPG, the network drivers insert a timestamp into the TmNS header

Delta = Link Latency
Summary

• In the presentation we covered the changes that were made to an existing telemetry system to better support the emerging RCC network standards
• We covered the RCC chapters
• We also covered hardware changes that were implemented to meet some of the requirements of the new chapters
• We discussed software systems that take advantage of the new interfaces and standard data formats
• Questions?
Thank You!

Telemetry & RF Products

9020 Balboa Ave.
San Diego, CA 92123
Tel: 858.694.7500

1515 Grundy’s Lane
Bristol, PA 19007
Tel: 267.545.7000

Sales.TRF@L3t.com

L-3com.com/TRF

This presentation consists of L3 Technologies Inc. general capabilities information that does not contain controlled technical data as defined within the International Traffic in Arms (ITAR) Part 120.10 or Export Administration Regulations (EAR) Part 734.7-11.