Test and Evaluation/Science and Technology Program
Spectrum Efficient Technology Focus Area

Algorithms for a
Spectrum Management System
A Tool to Aid Efficient Frequency Planning at Test Ranges

Phiroz Madon, Carol Martin
Telcordia Technologies, Inc.

The authors would like to thank Tom Young, SET Executing Agent, and the Test Resource Management Center (TRMC) Test and Evaluation/Science and Technology (T&E/S&T) Program for their support. This work is funded by the T&E/S&T Program through PEO-STRI contract number W900KK-10-C-0004.

ITEA 2011 Test Instrumentation Workshop
Approved for public release; distribution is unlimited. (AFFTC-PA-10671)
Problem Statement

• **Test & Evaluation Needs**
 – With increased bandwidth demands and a shrinking pool of available spectrum, only recourse is to significantly improve the ‘test throughput’ across the MRTFB
 – Manage available spectrum to maximize test range utilization
 – Dynamically share spectrum among concurrent test activities based on instantaneous demand
 – Rapid re-plan and re-assignment of spectrum during test execution in response to changes in real-time bandwidth needs and interference conditions

• **Science & Technology Challenges**
 – Develop effective frequency planning/optimization algorithms that enable high spectral efficiency and maximize test range utilization with sufficient link quality to meet MRTFB needs
 – Significantly improve the throughput of test ranges through:
 – Closer spacing of tests given a finer-grain view of frequency-band and air-space utilization
 – GUI visuals that allow the frequency manager to ‘see’ link quality, interference and gaps in spectrum usage
 – Frequency reuse
 – Spectrum planning in five dimensions – estimating capacity and link quality as functions of space, time and frequency
Spectrum Management System (SMS)

Project Description

Design, prototype and demonstrate a Spectrum Management System that incorporates realistic channel models, and accurate models for advanced radio system functionality to provide flexible operations and efficient use of the radio spectrum.
SMS Phase 1 Accomplishments

- Designed the SMS architecture, data model, and Engineering Prototype user interface
- Created preliminary software requirements for the SMS Phase 2 Build Prototype
- Devised and developed advanced frequency planning algorithms that extend reuse to 3D
- Developed a high fidelity Composite Aeronautical Path loss Model (CAPM) appropriate for use in the Test Range environment

Innovative 3D Frequency Reuse Approach

Developed a concept of 3D reuse as an extension of 2D reuse in terrestrial cellular networks that provides for a conservative yet efficient allocation of frequency resources supporting time-coincident reuse of spectrum

Channel models used in the SMS

Interference Calculations for Frequency Planning

For Test 1 and given a flight plan:
1. Divide airspace surrounding flight path into 3D blocks. Blocks cover the flight path with enough margin to allow for deviations in route
2. Calculate pathloss from each 3D space block to the candidate interpoint on ground.
3. Find 3D space block if they fall into the common flightpath with the prior test (Test 1). Define additional new space blocks as needed.
4. Calculate pathloss again to all the candidate antenna points on ground.

For Test 2 and a given flight plan:
1. Use the already defined space blocks if they fall into the common flight path with the prior test (Test 1). Define additional new space blocks as needed.
2. Calculate pathloss again to all the candidate antenna points on ground.

High Above: Free Space
Near Horizon – Low Altitude: L-R
High Altitude: G-J
TA-to-TA: Free Space
12º Elevation angle

SMS Project – ITEA 2011 Test Instrumentation Workshop
Approved for public release; distribution is unlimited. (AFFTC-PA-10671)
SMS Architecture

- The SMS is capable of planning frequency assignments for test plans across multiple test ranges including the flight corridors between them.

- The SMS is a client-server system with a well-defined data model implemented by an object-oriented database.
SMS Notional CONOPS

SMS Planning and Optimization Flow

User login

Define TAs and GSs

Create a test plan

Enter start time, options

Select participating TAs and GSs

Input flight plans

Create required communications channels

Validate test plan

View reports: test plan status, freq band assignments, start and end times

View updated displays:
- Spatial view of flight path, bins, channel propagation
- Time-frequency chart

Validation successful?

Channel propagation problem?

Frequency band conflicts?

Edit test plan: Flight plans, channel definitions

Edit test plan: Fix possible error condition

Edit test plan: Change options, adjust start time

No

Yes

No

Yes

Run test at start time with assigned frequencies

End

SMS Project – ITEA 2011 Test Instrumentation Workshop
Approved for public release; distribution is unlimited. (AFFTC-PA-10671)
SMS Planning and Optimization Flow

- SMS reference data includes test ranges, terrain data, spectrum allocations, current inventory of TAs and GSs, the RF transmitters and receivers, their frequency and power attributes, antennas and their attributes
- Test Planner creates a ‘Test Plan’
- SMS runs a ‘Validate’ process on the test plan
 - Check integrity of: TAs, GSs in test, flight paths, channel definitions
 - Creates frequency assignments for each transmitter and receiver in test
 - First tries without employing frequency reuse. If none available assigns with frequency reuse by determining the signal-to-interference ratio for each ‘bin’ of air-space in the test article’s flight-path.
 - SMS validates RF propagation for each requested channel using appropriate channel models for the scenario
- If the SMS determines conflicts with other test plans, responds to Planner with a ‘recommended start time’ when there will be no conflicts
- Once test is validated, frequency assignments are available as tabular reports, or are input directly over the interface to the Network Manager
- Flight paths, air-space ‘bin’ occupancy, spectrum assignments, propagation and interference are viewable in 3-D on SMS client GUI
SMS Planning and Optimization Flow

- SMS Client shows ‘Frequency-Time’ chart of scheduled tests for designated regions of air-space. Allows Planner to see frequency-occupancy ‘gaps’, or otherwise manually re-arrange start times for tests.
- During a test mission, the SMS supports real time requests from the NMS for additional spectrum, dynamic spectrum re-allocation, priority changes, and bandwidth changes.
- Additional inputs and outputs may be provided by interfaces with upstream and downstream systems.
SMS Engineering Prototype

- **Engineering Prototype demonstrates SMS tool to aid Frequency Managers in planning tests in the MRTFB**
 - Prototype verifies proof-of-concept and supports architecture and algorithm development
- **Allows a Frequency Manager to create and edit a test plan...**
 - Define test articles with their flight plans, ground stations and their locations
 - Configure them with RF devices
 - Specify RF channels (IRIG-106 and iNET) with their bandwidth requirements
 - Supports TDMA for iNET channels
 - Specify test plan options: fixed / flexible start time, priority-based preemption, frequency reuse
- **Validates the test plan and assigns a frequency to each link**
 - Verifies channel propagation during the test
 - Verifies signal-to-interference ratio for frequency reuse option
 - Allows for multiple receiving ground stations, and hand-off
- **Displays**
 - 3-D display over terrain of flight paths and spectrum bins
 - Time-frequency chart of frequency band occupancy of test plans over time

SMS Engineering Prototype screen shots follow ⇒
SMS Engineering Prototype
Test Plan creation and editing

![iNET SMS Client](image)

<table>
<thead>
<tr>
<th>Test Plan Name</th>
<th>Flight of the Shadow - Edwards, Tues March 1st.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>13 EDITING</td>
</tr>
<tr>
<td>Status</td>
<td>EDITING</td>
</tr>
<tr>
<td>Latency</td>
<td>1800 secs</td>
</tr>
</tbody>
</table>

All Test Articles, Ground Stations

<table>
<thead>
<tr>
<th>Test Article</th>
<th>Ground Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remus-450</td>
</tr>
<tr>
<td>2</td>
<td>Predator Drone</td>
</tr>
<tr>
<td>4</td>
<td>Edwards AFB</td>
</tr>
<tr>
<td>6</td>
<td>Edwards AFB</td>
</tr>
<tr>
<td>7</td>
<td>Point Mikes</td>
</tr>
<tr>
<td>8</td>
<td>Dragonfly X5</td>
</tr>
<tr>
<td>10</td>
<td>Ground Station</td>
</tr>
<tr>
<td>11</td>
<td>Dragonfly X5</td>
</tr>
</tbody>
</table>

Test Articles, Ground Stations in Test

<table>
<thead>
<tr>
<th>Test Article</th>
<th>Ground Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Honeywell UAV Shadow</td>
</tr>
<tr>
<td>5</td>
<td>Edwards AFB</td>
</tr>
</tbody>
</table>

Trajectory

<table>
<thead>
<tr>
<th>Relative Start</th>
<th>Early Start</th>
<th>Latest End</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800 secs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Way Points</th>
<th>bounding Box</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trajectory Item</th>
<th>Start</th>
<th>Duration</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>377</td>
<td>417.863123</td>
<td>702 meters</td>
<td>1200 secs</td>
</tr>
<tr>
<td>378</td>
<td>418.093234</td>
<td>730 meters</td>
<td>0 secs</td>
</tr>
<tr>
<td>379</td>
<td>418.208455</td>
<td>790 meters</td>
<td>0 secs</td>
</tr>
<tr>
<td>380</td>
<td>418.008845</td>
<td>2500 meters</td>
<td>0 secs</td>
</tr>
<tr>
<td>381</td>
<td>418.008845</td>
<td>3000 meters</td>
<td>0 secs</td>
</tr>
<tr>
<td>382</td>
<td>418.008845</td>
<td>3000 meters</td>
<td>0 secs</td>
</tr>
<tr>
<td>383</td>
<td>418.008845</td>
<td>3000 meters</td>
<td>0 secs</td>
</tr>
<tr>
<td>384</td>
<td>418.008845</td>
<td>3000 meters</td>
<td>0 secs</td>
</tr>
<tr>
<td>385</td>
<td>418.008845</td>
<td>3000 meters</td>
<td>0 secs</td>
</tr>
<tr>
<td>386</td>
<td>418.008845</td>
<td>3000 meters</td>
<td>0 secs</td>
</tr>
<tr>
<td>387</td>
<td>418.008845</td>
<td>3000 meters</td>
<td>0 secs</td>
</tr>
</tbody>
</table>
Flight plans, bins, and RF coverage are displayed in 3-D graphics over a terrain view of the earth. SMS quantizes air-space into ‘bins’, which are created and stored in the SMS’s database.
SMS Engineering Prototype
Time-Frequency Chart, weekly view
SMS Engineering Prototype

Time Frequency Chart, daily view – with frequency reuse

‘Frequency-Time’ chart allows Planner to see frequency-occupancy ‘gaps’ and manually re-arrange start times for tests.
SMS Channel Models

- Reviewed three standard path loss models that are appropriate for use in the Test Range environment (free-space, Longley-Rice, and Johnson-Gierhart) and models based on recent measurement campaigns by Rice et al.
- Developed the *Composite Aeronautical Path Loss Model (CAPM)* that incorporates the above models, categorizes the environment based on geography, transmitter/receiver location, altitudes, and geographic features and includes a link reliability metric. Environments include: high altitude link, low altitude – near the horizon link, high and above link, tarmac link, and test article to test article link.
Frequency Planning Algorithms

- Developed an innovative frequency planning algorithm that provides for a conservative yet efficient allocation of frequency resources supporting time-coincident reuse of spectrum
 - Identifies and quantifies potential interference between time-coincident tests using a series of geospatial calculations performed in 3-Dimensional space
 - Interference and additional constraints (e.g., priority) are mapped into a frequency reuse constraint matrix that lends itself naturally to a sequential solution that is computationally efficient and whose solution space can be represented using a trellis formulation
 - To support the practical use case in which requests for frequency allocations at a given time are expected to arrive over a period of time, the solution solves for the frequency needs of all known tests; when an additional request arrives, the solution attempts to assign frequencies to the new test without changing the allocations made previously
 - The solution obtained is used by the SMS to enumerate the frequency assignments that satisfy the needs of a set of test plans

Terrestrial Cellular – 2 dimensional
- Antenna Beamwidths 100-120 deg
- Fixed Pointing Angle
- Propagation Decay 30-40 dB/decade

SMS – 3 dimensional
- Antenna Beamwidths 3-6 deg
- Dynamic Pointing Angle
- Propagation Decay closer to 20 dB/decade

2D frequency re-use in a terrestrial cellular system

3D re-use as an extension to 2D re-use

3D re-use with highly directional tracking antennas
Frequency Planning Algorithms

A Mosaic of Modeling Concepts

Scope: Which Ground Stations (GS) need to be involved in interference calculations

Radio Horizon vs. Propagation – former is often the limiting factor

The calculation of GS Scope

Radio Horizon vs. Propagation – former is often the limiting factor

Threshold of relevance for GS-to-GS geometric calculations

TA# 1 0
TA# 2 0
TA# 3 0
TA# 4 0
TA# 5 0

Contains a “0” or a “1”
0: No Constraint
1: Constraint

Symmetric About Diagonal – Need only look at upper triangle
Diagonal all zeros

The frequency reuse constraint matrix

Trellis formulation of the solution of the frequency reuse constraint matrix

Theory

- Formulate Frequency Assignment as a system of constraints which preclude a pair of TAs from using the same frequency
- Sequential solution not unique – difficult to find optimum – but good solution is easy to find
- Priority handled automatically by order in which solution is found

Practical Design

- Desire to allocate frequencies for tests as requests come in rather than wait for all requests and find solution
- Up-to-date view of what is allocated and what is available
- Priority more difficult as earlier tests may need to be preempted or reallocated

Quantization of locations of Test Articles (TA) into bins – improves computational speed
- Antenna pointing uncertainty

SMS Project – ITEA 2011 Test Instrumentation Workshop
Approved for public release; distribution is unlimited. (AFFTC-PA-10671)
Summary

• **Spectrum Management System Project Objectives**
 – Design, prototype and demonstrate a system that incorporates realistic channel models to assist Frequency Managers in planning frequency band assignments at test ranges
 – Demonstrate spectrum planning in five dimensions – estimating capacity and link quality as functions of time, spatial coordinates (latitude, longitude and altitude), and frequency.
 – Significantly improve the spectrum utilization at test ranges through frequency reuse and closer spacing of tests

• **Current Achievements/Progress**
 – Completed initial SMS architecture, requirements and Engineering Prototype
 – Developed SMS channel model and frequency planning algorithms

• **Future efforts**
 – Work with frequency managers to refine SMS CONOPS
 – Develop and trial SMS Build Prototype