Test Case Design via Model Based Systems Engineering

Marshall Bronston, Col (USAF Ret.)
Professional Research Engineer
Marshall.Bronston@gtri.gatech.edu
520-352-2513
Systems-of-Systems = Complexity

- Methods for efficient cybersecurity test campaign design are needed
- Full mesh interfaces: \(c = \frac{n(n-1)}{2} \)
- Test program change impact mitigation
Agenda

- MBSE in a Systems Modeling Language context
 - Requirements
 - Structure
 - Behavior
 - Parametric
- Cyber security T&E
- Application of MBSE to generate useful and appropriate test cases
- Use of MBSE and its inherent automation to provide linkages and traceability between mission needs, requirements, design, and test activities
Model-Based Systems Engineering

Document-Centric

Model-Centric

Valdez
System Modeling Language (SysML) Views

- **SysML Diagrams**
 - **Structural Diagrams**
 - Block Definition Diagram
 - Internal Block Diagram
 - Parametric Diagram
 - **Behavioral Diagrams**
 - **Cross-Cutting Diagrams**
 - Requirements Diagram
 - Use Case Diagram
 - Sequence Diagram
 - Activity Diagram
 - State Machine Diagram
Behavior - Use Case Diagram Example

- Expected system behaviors
- Provides insight to white/gray/black box testing
- Actor interactions
- Threat/hacker interactions (mis-actor/mis-use)
Specify appropriate venues, instrumentation, red team constraints, etc.
Structural Diagrams – “BDD” Example

- Requirements are allocated to components
- Block Definition Diagram: major parts of an architecture
 - Ground segment
 - Vehicle (1..*)

```
This block definition diagram provides a high level description of critical voice and data elements associated with communications between control elements and the actual TELAR.
```
Structure – Internal Block Diagram Example

End-to-End comm flow/RF chain/Data structures
Behavior – State Machine Example

- Activity
- Sequences
- States
Behavior – Activity Diagram Example
Parametric Diagram - Example

- Inside SysML model – closed form calculations
- Calls to other model environments – optimized for problem type
- Avoids recreating validated models
Linkages and Views

- Diagrams provide views of the model
- Model provides linkages
- Views are tailored to aspects of interest
- Model depth developed to suit the need
- Changes to the model (e.g. manipulate the diagram) reflected in the model
- Broken model elements are highlighted in views
Agenda

• MBSE in a Systems Modeling Language context
 – Requirements,
 – Structure,
 – Behavior
 – Parametric
• Cyber security T&E
• Application of MBSE to generate useful and appropriate test cases
• Use of MBSE and its inherent automation to provide linkages and traceability between mission needs, requirements, design, and test activities
Cyber Security T&E

- Goal: efficient test campaign design
- Stakeholder concern traceability
- Scope test events
 - Objectives
 - Scenarios
 - Instrumentation
 - Red Team
Measurement Decomposition

- Stakeholder concern (e.g. DT, OT) determines scope and focus
- Test construct based on system requirements
- Priorities/risks drive test requirements
Test Scope

- Fidelity
- Depth
- Breadth

It is also okay to mix levels of fidelity among different functional elements in a single execution.

MOP/Technical Performance - Example

System Performance Parameters
- Track Update Timeliness/accuracy
- Number/Type of Tracks
- Common Awareness
- Interoperability of Link feed interfaces
- Effectiveness of Collab. Tasks
- Process Execution Time

Technical Performance Parameters
- Message Latency
- Geographical COP Differences
- # of planned targets
- Alternatives Analyzed
- Interactive/Exchange
- Task Latency
- Effective Bandwidth
- Quality of Service

Fundamentals of Cybersecurity T&E
Agenda

• MBSE in a Systems Modeling Language context
 – Requirements,
 – Structure,
 – Behavior
 – Parametric
• Cyber security T&E
• Application of MBSE to generate useful and appropriate test cases
• Use of MBSE and its inherent automation to provide linkages and traceability between mission needs, requirements, design, and test activities
Test Case

- **Purpose:** specify test requirements
 - Types (Pen, Security, Software Integration Lab, TEMPEST, Anti-Tamper/ Detection, Encryption, Cross Domain, etc.)
 - Environment (cyber range, live network, lab, anechoic chamber, open air range, etc.)

- **Build/manage in model**
 - Often winds up being/looking like a run card
 - Views (run cards, etc.) can be rendered via SysML
 - Can build as a collection of events
 - Consider value of traces/linkages in model

- **Includes:**
 - Required Test Environment/Conditions
 - Steps/procedure: input/expected outcome/”verdict”
Case Mapping to Create a Test Campaign

Decisions

Decision points within the program are listed across the top row of the table, with Decision Support Questions that support the decisions defined directly beneath.

Evaluation

High level evaluation measures are referenced in the far left columns. The evaluation measures are referenced from the Systems Engineering Plan, PPP, and requirements documentation.

Test

Test events that “feed” the decision are defined in the cells corresponding to decisions, DSQs, and evaluation measures.

Resources / Schedule

Resources and schedule are defined in the TEMP, linked to decisions and test events included in the matrix.

Table: Developmental Evaluation Categories

<table>
<thead>
<tr>
<th>Decision 1</th>
<th>Decision 2</th>
<th>Decision 3</th>
<th>Decision 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSQ #1</td>
<td>DSQ #2</td>
<td>DSQ #3</td>
<td>DSQ #4</td>
</tr>
<tr>
<td>DSQ #5</td>
<td>DSQ #6</td>
<td>DSQ #7</td>
<td>DSQ #8</td>
</tr>
</tbody>
</table>

Functional Evaluation Areas

- **Performance**
 - Capability #1
 - Capability #2
 - Capability #3
 - Capability #4

- **Interoperability**
 - Capability #3
 - Capability #4

- **Cybersecurity**
 - SW/System Assurance
 - RMF
 - Vulnerability Assess
 - Interop/Expansible Val

- **Reliability**
 - Reliability Cap #1
 - Reliability Cap #2

System Requirements and T&E Measures

<table>
<thead>
<tr>
<th>Performance</th>
<th>Interoperability</th>
<th>Cybersecurity</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.x.1</td>
<td>3.x.3</td>
<td>4.x.1</td>
<td>4.x.1</td>
</tr>
<tr>
<td>3.x.2</td>
<td>3.x.4</td>
<td>4.x.2</td>
<td>4.x.2</td>
</tr>
<tr>
<td>3.x.3</td>
<td>3.x.5</td>
<td>4.x.3</td>
<td>4.x.3</td>
</tr>
<tr>
<td>3.x.4</td>
<td>3.x.6</td>
<td>4.x.4</td>
<td>4.x.4</td>
</tr>
</tbody>
</table>

Decisions Supported

- Identify major decision points for which testing and evaluation phases, activity and events will provide decision supporting information.
- Each contains description of data source to be used for evaluation information, for example:
 1. Test event or phase (e.g. CERT, ...)
 2. M&S event or scenario
 3. Description of data needed to support decision
 4. Other logical data source description
Data Supporting Net Ready KPPs

| Document/Architecture | AV-1 | AV-2 | CV-1 | CV-2 | CV-3 | CV-4 | CV-5 | CV-6 | DIV-1 | DIV-1 (OV-7) | DIV-1 (SV-1) | DIV-1 | DIV-2 | DIV-2 (OV-7) | DIV-3 | DIV-3 (OV-7) | DIV-3 (SV-1) | DIV-4 | DIV-4 (OV-7) | DIV-4 (SV-1) | DIV-4 (SV-2) | DIV-5 | DIV-5 (OV-7) | DIV-5 (SV-1) | DIV-5 (SV-4) | DIV-6 | DIV-6 (OV-7) | DIV-6 (SV-1) | DIV-6 (SV-4) | DIV-7 | DIV-7 (OV-7) | DIV-7 (SV-1) | DIV-7 (SV-4) | DIV-8 | DIV-8 (OV-7) | DIV-8 (SV-1) | DIV-8 (SV-4) | DIV-9 | DIV-9 (OV-7) | DIV-9 (SV-1) | DIV-9 (SV-4) | DIV-10 | DIV-10 (OV-7) | DIV-10 (SV-1) | DIV-10 (SV-4) | DIV-11 | DIV-11 (OV-7) | DIV-11 (SV-1) | DIV-11 (SV-4) | DIV-12 | DIV-12 (OV-7) | DIV-12 (SV-1) | DIV-12 (SV-4) | DIV-13 | DIV-13 (OV-7) | DIV-13 (SV-1) | DIV-13 (SV-4) | DIV-14 | DIV-14 (OV-7) | DIV-14 (SV-1) | DIV-14 (SV-4) | DIV-15 | DIV-15 (OV-7) | DIV-15 (SV-1) | DIV-15 (SV-4) | DIV-16 | DIV-16 (OV-7) | DIV-16 (SV-1) | DIV-16 (SV-4) | DIV-17 | DIV-17 (OV-7) | DIV-17 (SV-1) | DIV-17 (SV-4) | DIV-18 | DIV-18 (OV-7) | DIV-18 (SV-1) | DIV-18 (SV-4) | DIV-19 | DIV-19 (OV-7) | DIV-19 (SV-1) | DIV-19 (SV-4) | DIV-20 | DIV-20 (OV-7) | DIV-20 (SV-1) | DIV-20 (SV-4) | DIV-21 | DIV-21 (OV-7) | DIV-21 (SV-1) | DIV-21 (SV-4) |
|-----------------------|------|------|------|------|------|------|------|------|-------|----------|----------|-------|-------|----------|-------|----------|----------|-------|----------|----------|----------|-------|----------|----------|----------|-------|----------|----------|----------|-------|----------|----------|----------|-------|----------|----------|----------|-------|----------|----------|----------|-------|----------|----------|----------|-------|----------|----------|----------|
| DCR | 1 | R | R | R | R | R | | | | R | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| CONOPS | 1 | R | R | R | R | R | R | R | R | R | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| ICD | 1 | X | R | R | R | R | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| CDD | 1 | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| CPD | 1 | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| IC^3.4 | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Legend

- **X** - Required
- **O** - Optional
- **R** - Recommended,
- PM needs to check with their Component for any additional architectural/regulatory requirements for CDDs, CPDs. (e.g., HQDA requires the SV-10c, USMC requires the SV-10a and SvcV-8).

Note 1
The AV-1 must be registered, must be “public” and “released” at the lowest classification level possible in DAKS for compliance.

Note 2
The technical portion of the StdV-1 and StdV-2 are built using OCO-F DISR standards profiling resource and, within six months of submitting JCIDG documentation, must be current and published for compliance. Use of non-mandated DISR standards in the StdV-1 must be approved by the PM or other duly designated Component cognizant official and documented by a waiver notification provided to the DoD CIO.*

Note 3
Intelligence Community (IC) requirements IAW the IC Enterprise Architecture Program Architecture Guide and development phase which clarifies the IC Policy Guidance 801.1 Acquisition.

Note 4
Service Views (SvcV) only

Note 5
1. The Sponsor* and the Program are jointly responsible for the AV-1, AV-2, CV-1, CV-2, CV-3, CV-4, CV-5, CV-6, SV-6 or SvcV-7.
2. The Sponsor* is responsible for the development of the architecture data for the OV-1, OV-2, OV-4, OV-5a, OV-6c, DIV-2, and the SV-6 or SvcV-6.
3. The Program is responsible for the development of the architecture data for the DIV-1, DIV-3, OV-3, OV-5a, OV-6a, PV-2, SV-1 or SvcV-1, SV-2 or SvcV-2, SV-4 or SvcV-4, SV-5a or SvcV-5, SvcV-10a, SvcV-10b, SvcV-10c, StdV-1, and StdV-2. * Operational user (or representative).

Note 6
The NR-KPP Measures data is captured in the SV-7 or the SvcV-7.

MBSE in SysML Supports Document Rendering
Agenda

• MBSE in a Systems Modeling Language context
 – Requirements,
 – Structure,
 – Behavior
 – Parametric
• Cyber security T&E
• Application of MBSE to generate useful and appropriate test cases
• Use of MBSE and its inherent automation to provide linkages and traceability between mission needs, requirements, design, and test activities
Test Data Analysis

- MBSE applied to test cases provides structured traceability
- Test case inputs and outputs feed forward to results
- Test cases and events translate laterally (event mapping)
- Test events and activities can enable vertical model integration
- Enables correlated analysis
- Analysis easily traced backwards to requirement and mission need/impact

Typical Concerns
- Movement
- Network
- Time
- Context: Uses, Emergent Behaviors, Valuations
Limitations of this Approach

- Valid well-documented Requirements and Boundaries
- Clear direction to test
- Well-trained/educated test force
- Established enterprise processes in-place
- Sufficient SUT maturity (“as tested” baseline exists)
- Flow follows NIST/Cybersecurity T&E Guidebook
- Baseline T&E follows design & developmental iteration
- Complexity of Test Requirement is sufficient to warrant this approach
Benefits of Approach

• Deals test method complexity
• Allows for library of tests/ontologies that can be re-used
• Many are already doing something similar, automate where complexity itself creates test validity risk
• Automate traces and linkages, especially for complex test campaign data collection: flaws “glow in the dark”
• Maps well to hypothesis, useful to validate model approach
• Allows analysis trace: event → outcome → requirement → need
• Natural flow supporting results analysis
• Top-down view establishes purpose and context
• Excellent communication device, swift means to maintain team continuity
• Permits apples-to-apples comparisons in a manner understandable to decision makers and test teams – repeatability
Summary

- Cybersecurity is naturally complex
- Complexity requires a systems approach
- Threat diversity forces need for systematic test & evaluation methods
- Model-Based Systems Engineering tools provide extensible views
- Automation via SysML is one way to structure clerical functions
- Maintain context of the event vs test campaign
- Tests support informed decision-making
References Cited

- DoD Cybersecurity Test and Evaluation Guidebook V1.0, 1 July 2015.
- “Team TELAR” SysML model, PMASE ASE 6005 Student Project, GIT, 2011.
- Register, A. “Fidelity Resolution and Accuracy”, GT PMASE course, spring 2010.
Artifacts and Events Mapped to the Acquisition Life Cycle

Cybersecurity T&E Guidebook