GPS TSPI for Ultra High Dynamics

Use of GPS L1/L2/L5 Signals for TSPI

ITEA Test Instrumentation Workshop, May 15th – 18th 2012

For further information please contact

Tony Pratt: tpratt@qinetiq.com
Alex Macaulay: aamacauley@qinetiq.com
Nick Cooper: njcooper@qinetiq.com

Unit 1, Highfield Parc
Highfield Road, Oakley
Bedfordshire MK43 7TA
United Kingdom

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

Batch of 10 off Q20 HD GPS Modules Being Pick and Place Populated During Manufacture
Motivation
GPS Solution
GPS Signals Evolution
Architecture of Receiver
- Signal Conditioning
- Search, Acquisition and Tracking
- Measurements and processing
Performance Simulation
Performance Test Results
Motivation
Motivation

Test and Evaluation Applications for Advanced Weapons

- New class of high energy kinetic weapons
 - Distinguishing characteristics
 - High dynamics envelope: acceleration ~500g; velocity ~5km/s; control range safety zone
- New classes of T&E measurement requirements
 - GPS and coupled (MEMS) IMU
 - Accuracy improvement, Support in ‘difficult’ GPS areas (urban warfare)
- High accuracy TSPI results
 - Moderate to low dynamics
 - End game scoring - ~10cms
- Tactical GPS will be subject to intentional denial in areas of military operation
 - Requirement to test for effects on weapons systems
 - L5 signals provide *independent* navigation grid for T&E
 - Jamming causes unpredictable behaviour – see next slide
Observed Effects of Jamming

Coverage of GPS jamming unit; 25m above ground level, maximum power 1.58W ERP

Ship steering course in blue
- Left track (no jamming)
- Right track – GPS L1 locations reported with jammer switched on
 - Red dots are speeds > 100kts
GPS Solution & Signal Evolution
T&E Solutions using 3 Frequency GPS

GPS Broadcasts on 3 Frequencies

- **L1** 1575.42 MHz (154 x 10.23 MHz) – P(Y) code, C/A code
 - Rapid time to acquisition & fix; high dynamics envelope ~300g+
 - Long code wavelength ($\lambda_{\text{CA}} = 293\text{m}$); short code of 1ms, range ambiguity (293 km)
- **L2** 1227.60 MHz (120 x 10.23 MHz) – P(Y) code + CM, CL code, broadcast from 10 SV’s
 - New civil signals; L2CM, L2CL
 - Longer code wavelength ($\lambda_{\text{L2C}} = 586\text{m}$), potential for dynamics ~500g LOS
 - Codes are 20ms & 1.5 sec, no range ambiguity, greater difficulty in acquisition (esp. CL)
- **L5** 1176.45MHz (115x10.23MHz) – L5I + L5Q, broadcast from 2 SV’s
 - L5 (civil) signals on Block IIF SV’s
 - Operates in aeronautical safety of life band (ITU protected)
 - Short code wavelength ($\lambda_{\text{code}} = 29.3\text{m}$), 10.23Mcps code rate - same as P(Y)
 - Provides independent low dynamic navigation
 - T&E application used for L1/L2 performance assessment during jamming conditions

L1, L2, L5 – offer greater range of T&E performance options
New GPS Signals - ITU Navigation Protected Bands

Navigation Signals in protected bands
- International Telecommunications Union
 - ARNS (aero-nautical band – protected safety of life services)
 - L5 contains DME aircraft transponders
UHD Basic Concepts

Three Frequency GPS Receiver

• Basic civil signal receiver avoiding use of military signals
 – Military code wavelength requires use of IMU to support high dynamics ($\lambda_m=29.3$ m)
 – Military codes are long (1 week) at 10,230 kchips/sec
 – Limited (10dB) benefit against jamming (compared to C/A code)

Processing for fast Time To First Fix (TTFF)

• Direct data download from satellite too slow (30+sec)
 – Typical requirement < 3sec
• Hybrid receiver mode
 – Uses ground Reference Station includes GPS receiver resource
 – Navigation Messages from visible satellites
 – Establishes position estimate and GPS time solution
 – Optionally measure and correct for satellite clock and ephemeris errors (differential mode)
• Solution computed in ground station
 – Options for measurement combinations
UHD Receiver Architecture & Performance Simulation
Main Developments in UHD

Three Frequency GPS Reception
Sustained or Improved TTFF

- Efficient use of hardware architecture to provide >1M acquisition channels
 - Simultaneous frequency and code search algorithm

Multi-channel Tracking for all-in-view Satellites

- Every frequency/signal simultaneously tracked
- Hardware uses high speed multiplex technique
 - Benefits from speed of current FPGA/ASIC switching circuits
 - Reduces circuit area but not power consumption

Tracking Loop Design for Maximum Acceleration Dynamics

- Trades sensitivity for dynamics to limit of GPS capability

Hybrid Receiver Technique to Sustain sub-30 sec TTFF

- Accuracy improvements through DGPS possible
Physical Breadboard

COTS Platform
- 2 FPGA with sufficient capacity
- 2 x Virtex 5 LX220 -2 (Xilinx)
 - Signal conditioning and tracking; signal acquisition
UHD System Architecture

System Architecture

- Separate channels for acquisition and tracking
 - Acquisition requires 100,000’s channels to support short TTFA
 - Tracking requires few physical channels dedicated to visible SV’s (~60 for 5 signals /SV)
 - L1(1); L2(1); L5 (5)
- Signal conditioning
 - Digital transversal filters to set bandwidth (allowing lower sample rates)
 - Received signal samples are stored
 - Acquisition based on analysis of stored data sample (eg 1ms for C/A code; 20ms for L2CM)
 - Acquired signals referenced to common timebase
Dynamic Envelope for Host Vehicle

Stresses the Receiver Measurement Circuits

- Satellite tracking lost if stress too large
- Tracking circuits experience 2 types of stress:
 - Noise - mainly controlled by bandwidth and C/N₀ levels
 - Sources of dynamic stresses:
 - host body - satellite motion resolved along line of sight (LOS) to satellite
- Dynamic stresses arise due to:
 - During signal acquisition
 - transients – imperfect match of estimated code delay and Doppler to actual
 - Un-modeled motion (after acquisition)
 - Tracking architecture holds vehicular motion states (such as position, velocity, etc)
 - Stable states do not contribute to stress
 - Host vehicle states are useful if stable for reasonable intervals
 - Highly dependent on expected host vehicle trajectory
 - Mainly controlled using 3ʳᵈ order tracking loops
 - Model position, velocity, acceleration states
Simulated results for Loop Pull-in Responses

Initial Delay and Velocity Parameters
- Measured during search and acquisition
 - Propagated forward in time to loop closure
 - Delay and velocity errors stimulate transients
 - Example:
 - In linear detector region
 - Non-oscillatory response (direct pull-in)
 - Largest error ~ 0.25 chip (~75m) mainly due to position error
 - Velocity error produces ~0.15 chip response
 - Majority of error is dissipated after 1 sec
 - Loop will pull in from larger errors
 - Loop gain approaches zero at ±0.5 chip
 - Pull-in will not occur for larger errors
 - Noise degrades pull-in limits
Noise Response at Pull-in

Realization of Loop Response

- Results from simulation
 - Combined response of:
 - Noise input
 - 250g acceleration step
 - $\frac{1}{4}$ chip position error
 - 1km/s LOS velocity error
 - Balance between:
 - Noise and dynamic stimuli
 - See approach to critical error (½ sec)
 - $C/N_0 \sim 23$dB (red); 36dB (blue)
 - Identical noise realization in simulation
 - Generated from random number source
Performance Tests and Results
UHD GPS Testing

Verification and Validation Testing Carried Out
- Test cases defined based on User and System requirements
- Performed at QinetiQ and GWEF (Eglin AFB) facilities

Tests with Simulated RF Signals
- Provides repeatability, control, dynamics and truth data - common test scenarios
- QinetiQ: Spirent GSS8800
- GWEF: Spirent GSS7700
- Tested under dynamics
 - acquisition and tracking performance
 - position and velocity accuracy, carrier phase

Tests with Off-air Signals
- L1 (31 satellites), L2C (10 satellites)
 - Combined L1/L2 antenna
- L5 insufficient satellites (2 only so far)
UNCLASSIFIED

UHD GPS Headline Achievements

Acquisition and Tracking
• L1 signals, off-Air and simulated
• L2CM/L2CL signals, off-Air and simulated
• L5 signals, simulated – insufficient coverage for off-air testing

All satellites acquired in under 3 seconds in any frequency band

Independent Position solutions generated from L1, L2C, L5 signals
• Uses existing ground segment equipment

Carrier Phase Tracking
• Carrier phase tracking of simulated L1, L2C, L5 signals at >50g Acceleration
 – (Manual) data demodulation and time decoding from L1 carrier tracked off-air signals

Performance detailed on next slides
UHD GPS Provisional Performance Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing JAMI Performance</td>
<td>Current Target</td>
<td>Ultimate Goal</td>
<td>Achieved at End of Program</td>
</tr>
<tr>
<td>Max Acceleration at Satellite Acquisition</td>
<td>50g</td>
<td>600g</td>
<td>1,000g</td>
<td>L1: 800g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L2: 1000g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L5: 100g</td>
</tr>
<tr>
<td>Tracking through Acceleration</td>
<td>50g</td>
<td>600g</td>
<td>1000g</td>
<td>L1: 1000g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L2: 2000g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L5: 100g</td>
</tr>
<tr>
<td>Maximum (Body) Velocity at Satellite Acquisition</td>
<td>500m/s</td>
<td>3000m/s</td>
<td>5000m/s</td>
<td>L1: 9000m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L2: 11000m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L5: 3000m/s</td>
</tr>
<tr>
<td>Maximum (Body) Velocity Tracking</td>
<td>500m/s</td>
<td>3000m/s</td>
<td>5000m/s</td>
<td>Approx 16000m/s</td>
</tr>
<tr>
<td>Position Accuracy</td>
<td><10m</td>
<td><10m</td>
<td><0.3m (with processing)</td>
<td>L1: <5.8m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L2: <6.4m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L5: <25m</td>
</tr>
<tr>
<td>Velocity Accuracy</td>
<td>1m/s</td>
<td><1m/s</td>
<td><0.3/s</td>
<td>L1: <7.9m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L2: <9.5m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L5: <14.3m/s</td>
</tr>
</tbody>
</table>

Note: Some performance issues with L5 accuracy to be resolved
UHD GPS Provisional Performance Results (cont…)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing JAMI Performance</td>
</tr>
<tr>
<td>Time To First Fix</td>
<td>3.5s</td>
</tr>
<tr>
<td>Time to detect last SV (SV32)</td>
<td>7s</td>
</tr>
<tr>
<td>Maximum time to acquire all in view</td>
<td></td>
</tr>
<tr>
<td>Receiver Type</td>
<td>L1</td>
</tr>
<tr>
<td>Receiver Channels</td>
<td>12 channels</td>
</tr>
<tr>
<td>Nominal Simultaneous search windows</td>
<td>25,000</td>
</tr>
</tbody>
</table>
Acknowledgements

This project is funded by the Test Resource Management Center (TRMC) Test and Evaluation/Science & Technology (T&E/S&T) Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI) under Contract No. N-66604-07-C-2614.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Test Resource Management Center (TRMC) and Evaluation/Science & Technology (T&E/S&T) Program and/or the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI).