The TENA and JMETC Solution for Telemetry in Distributed Ranges and Facilities

Gene Hudgins
Gene.Hudgins@TENA-SDA.org
(850) 803-3902
TENA and JMETC
User Support Lead
Historically, range systems tend to be developed in isolation, focused on specific requirements, and constrained by aging techniques/technologies.

Range infrastructures have grown organically with minimal coordination or sharing, resulting in duplicated effort and many “stove-pipe” systems.

The purpose of TENA is to provide the necessary enterprise-wide architecture and the common software infrastructure to:

- Enable interoperability among range, C4ISR, and simulation systems used across ranges, HWIL facilities, and development laboratories.
- Leverage range infrastructure investments across the DoD to keep pace with test and training range requirements.
- Foster reuse of range assets and reduce cost of future developments.

Working with the Range Community to Build the Foundation for Future Test and Training Range Infrastructure.
Benefits of TENA

- All TENA software and support is free to users
- TENA is the most capable and sophisticated interoperability solution
- TENA software is thoroughly tested and very reliable
- TENA Auto-Code Generation makes creating a TENA application as simple as possible
 - TIDE Tool manages installation and configuration, upgrading and maintenance
 - Auto-generated starting points mean you never start with a blank page
 - Rapid development of real-time, distributed, LVC applications
 - Auto-generated test programs make integration a snap
- TENA’s technical approach emphasizes cost savings and reliability
 - The TENA software is hard to use wrong
 - TENA catches many user errors at compile time rather than run time
 - TENA Tools provide unprecedented understanding of an event
- TENA has a standard object model enhancing interoperability
- The TENA web site/repository has extensive documentation, training, and collaboration capabilities
- TENA has a plan for evolution and funding to execute this plan!
TENA Architecture Overview

TENA Applications

- Range Resource Application
- Range Resource Application
- Range Resource Application

TENA Tools

- Reusable Applications
- Reusable Applications

TENA Common Infrastructure

- TENA Repository
- TENA Middleware
- TENA Utilities

- Infrastructure Management and Planning Utilities
- Repository Utilities

Non-TENA Applications

- Non-TENA System
- Non-TENA System
Objective: Develop and field an enterprise approach to remotely manage and operate all components of remote ATR ground telemetry systems. Approach should provide common interfacing to system components regardless of system manufacturer. Provide for single operator control of several remote TM systems which reduces travel and manning requirements at remote sites.

Current TM Approach:

- **Operator Proximity:** Current systems require TM Operator to be at location of TM Antenna Control Unit (ACU) during missions
 - Any near term remote operations concepts require a one-to-one correlation between remote ACU and remote TM Antenna, but no sub systems supported
- **Lights Out Operations:** No ability to fully power-on, configure, operate, and obtain status from remote Auto-Tracking Telemetry System (ATAS) and Mobile Telemetry Acquisition System (MTAS) systems. Requires personnel on-site to perform power-on and configure all systems. No distributed status available from TM system components.
- **Generalized Interface:** Vendor specific interfaces and data models are used
 - Operators must gain proficiency on each system component
 - Prohibits uniform operator consoles
 - Limited ability to easily access and share relevant metrics and engineering data
- **Information Assurance:** Limited ability to meet evolving Information Assurance (IA) requirements and Security Technical Implementation Guides (STIG) on system components
Operational View (OV-1)

ATC (Bldg. 2118)

Remote Operations:
- TM Antennas
- TM Receivers
- Spectrum Analyzers
- Oscilloscopes
- Power Distribution

Real Time Displays:
- Antenna Position
- Signal strength
- Decommutator Status
- Airplane Position

Data Collection:
- Enable post mission analysis
- Enable cross mission analysis for range characterization and optimization
ARC-TS Roadmap Overview

Current

- Addressable Power Strip
- VISA Standard (SpecA & O-Scope)

Cost Savings (Remote Manning / Travel)

Autonomy and Maintainability

Remote Operations Functionality

End State

- SEMCO Receiver
- GDP Bit Sync
- Malibu & Orbit Status & Remote Control
- Supervisors Console (Access Controls)

Testing
- Pax
- Wallops
- Remote
- Lab
- Adaptors

Common Interfaces
- Remote Operations Status Displays
- Remote Operator Console
- Supervisor Access Controls

Real-Time Remote Operator Stations

Status Displays

Real-Time Remote Operator Stations

Notional ROS

Testing Remote

RDDS ➔ TENA Adaptors
Implementation Strategy

- Develop vendor agnostic object models and interfaces for the functional systems
 - Consider ability to support multiple vendors in the design, e.g., use inheritance, make attributes optional
- Develop TENA Adapters for the required functional systems
 - TENA Adapters will be vendor specific, although sharing implementation code for typical system interfaces (e.g., SNMP, VISA) will be performed when feasible
- Develop Remote Operator Station (ROS)
 - We would like Range developers to assist in this area to ensure look and feel meet operator needs and help with broad acceptance within user community
 - Web Browser based user interface approach for status and quick-look information
- Avoid using proprietary protocols for remote operations
 - Utilize open architecture with common object models to achieve enterprise solution
 - Utilize common API for all systems
- Incremental functionality demonstrations through development sprints will be conducted to integrate lessons learned and mitigate overall program risk
What is meant by an Adapter?

- DoD Test Resource Management Center (TRMC) is creating a library of software products called Range System Adapters
 - Adapters present a common distributed communication mechanism for the remote configuration, monitoring, and control of range systems
 - Adapter software is GOTS and freely available
 - Adapter software maintained as a collection that evolves to follow best practices
- Adapters enable range community to define/use common Interfaces
 - Rich meta-model used to define range system interfaces authoritatively
 - Designed to support code generation and remote operation/automation
- Common Communication Architecture
 - Range system interface supports remote monitoring and control, as well as the exchange of information between systems in a flexible publish-subscribe manner
 - Many pre-event, during event, and post-event range event tools exist
- Side-by-Side Operation
 - Adapters can be used side-by-side with existing range systems to introduce new capabilities in an effective and IA compliant manner
Object Models (OMs)

- **Object Models**
 - Object Models formally define system information and services with support for automatic code generation
 - Users are permitted to derive extensions to TENA standard OMs, or users can establish their own OMs
 - TENA SDA collects requirements and implementation considerations from user community and candidate TENA standard OMs published for community review and testing purposes

- **Range Instrumentation System Classes (e.g., telemetry, radar, optics)**
 - Class inheritance hierarchy (16 separate classes with a total of ~120 attributes and ~25 remote methods)
 - Intended to be used by range instrumentation system vendors and range organizations, with unique derived class with proprietary and legacy attributes when necessary
 - Abstract base classes can be used by subscribing systems that just need basic information common to all range instrumentation systems (e.g., senior operator needs view of the operating status value for all antenna control units independent of any organization/vendor specialized derived classes)

- **Range Instrumentation Pointing and Track Representations**
 - A Pointing object is used for instructing an instrumentation system to look at a particular position, potentially at a future time (e.g., predicted missile impact position)
 - Range systems can use Pointing objects for multiple operational use cases (e.g., system operator can select a particular Pointing, system can automatically select the best Pointing, a remote operator can instruct the system which Pointing to use)
 - Tracks are based on instrumentation system measurements indicating what was sensed (e.g., azimuth and elevation angles to a test article's beacon signal at a particular time)

- **Range Instrumentation Sub-System Classes**
 - Definition of remote operation interfaces for instrumentation sub-systems, e.g., receiver, spectrum analyzer, controllable power strip, antenna control unit (similar to System class structure where derived classes permitted)
 - Designed for effective, multi-operator, remote monitoring and control of instrumentation sub-systems
TENA Adapter and GUI List
(31 software products)

- APC-7900 Power Strip Controller
- iBootBar Power Strip Controller
- Tripplite Power Strip Controller
- FPS-16 Radar (WSMR Interface)
- MPS-25 Radar (Yuma interface)
- Weibel RTP-2100 Radar
- Multiple Object Tracking Radar (WSMR interface)
- BAE TRRM Radar (RRRP)
- TA C-Band Medium Range Radars (RRRP)
- RTDPS Real-Time Track Processing System (WSMR interface)
- IRTS Real-Time Track Processing System
- MRTE Real-Time Track Processing System (Yuma Interface)
- IVTS GPS System (Yuma interface)
- KTM Optics (Yuma Interface)
- SRI RM-6300 Telemetry Signal Simulator
- TCS 600 Telemetry Antenna Control TCS M1L Telemetry Antenna Control Unit (NAVAIR-ATR, Yuma, & Native Interfaces)
- Quasonix Hypertrack Antenna Control Unit
- LPT Spectrum Analyzer (LP Technologies 3000, 6000 models)
- SEMCO R600A Telemetry Receiver
- Zodiac RX-1 Telemetry Receiver
- Quasonix Gen 3 telemetry Receiver
- InstrumentAssignment-GUI
- PowerController-GUI
- PointableSystem-GUI
- RadarTrackingSystem-GUI
- WeibelDopperRadar-GUI
- TelemetryAntennaControl-GUI
- SpectrumAnalyzer-GUI
- TelemetryReceiver-GUI
- TM-Config-Check-GUI
- OpticsSystem-GUI
TelemetryAntennaControlSystem
Class Hierarchy Illustration

Documentation maintained in TENA Repository
Example Object Model
Power Controller
(aka networked power strip)

package TENA {
 local class PowerOutlet {
 string outletName;
 int16 outletNumber;
 boolean isPoweredOn;
 optional float32 currentLoadInAmps;
 };
 class PowerController {
 const string deviceName;
 const string siteName;
 PowerControllerState status;
 optional string errorState;
 vector <PowerOutlet> outlets;
 void turnOutletOn (in string outletName);
 void turnOutletOff (in string outletName);
 const boolean isEventLogMaintained;
 vector<string> getEventLog ();
 };
};

Package TENA used for community approved standards, but other groups can create extensions or new OMs as necessary.

Attributes used to characterize the individual power strip outlets.

Power controller system publishes object with identification and status information. Client applications monitor status and can invoke methods.
Architecture for Remote Telemetry Site

Remote Telemetry Site

- Power Controller Adapter
- Spectrum Analyzer Adapter
- Telemetry Antenna Controller Adapter
- Telemetry Receiver Adapter

SNMP
SCPI
TCP/UDP
JSON

TENA Object Model Common Range Communications

Remote Configuration
Remote Operator GUI Station(s)
Range Supervisor GUI Station(s)
Data Recorder
JSON interface
Range Protocol Adapters
Event Management Tools
NAVAIR ATR
Advanced Remote Controlled Telemetry System (ARC-TS)

Remote Monitoring
- Provide a situational awareness capability that allows range operators and supervisors to remotely monitor the configuration and operational status of telemetry systems

Range Characterization
- Enable the collection of TSPI, TM antenna pointing, RF signal strength and decommutator status to enable precise characterization of existing TM coverage and modeling of coverage in C-band
Prototype GUls

SIMDIS showing three antennas tracking airplane
Prototype GUls (cont.)

GUI elements are written in Qt (work on Linux and Windows) and can be assembled into a dashboard.
1. TENA Capable Range Interface Unit for Radars
2. TENA capable Telemetry Tracker pointing data interface – Mod of existing RIU
3. Persistent distributed TENA capability through IRCC

WSMR TENA SENSORS

1. **RADAR**
 - (3 MOTR, 7 FPS-16)
2. **Field Telemetry**
 - (3 TM Trackers)
3. **Inter-Range Control Center**
 - Router
 - Firewall
 - DREN
 - TENA Capable MRTFB

Legend
- Current TENA Capability
- New TENA Capability
WSMR DICE
“TENA Way Forward” Phases

TENA will be used to connect the following range systems:
- FPS-16 Radars
- Telemetry Systems
- Optics Systems
- Real-Time Data Processing (RTDPS, MRTE) – future

Phase 1

Phase 3
• TENA::Pointing <> PAS-XYZ

 • Developed portions of this particular Protocol Converter as a prototype to evaluate particular architectural design considerations

 • Need to continue to evolve the implementation into an exemplar for defining the Protocol Converter architecture

 • Plan to provide documentation and source code for community review
DICE Object Models

- **TENA-Pointing**
 - Standard OM created while working WSMR optics systems several years ago

- **TENA-RangelInstrumentation (TENA-RI)**
 - Emerging standard OM structure specifically designed for range instrumentation systems (see subsequent slides)

- **WSMR-DICE**
 - Provides extension to the standard OMs for WSMR specific attributes:
    ```cpp
    enum WSMR::TrackMode {No_Track, Acquisition, Coast, Skin, Beacon};
    WSMR::Pointing extends TENA::Pointing {
        TrackMode trackMode;
    };
    WSMR::Track3D extends TENA::Track3D {
        int8 AGCquality;
        int8 bandwidth;
        TrackMode trackMode;
    };
    ```
 - Adds LiftoffIndicator and WeatherMeasurements classes
TENA Enabled TM Control at YUMA

- TCS Antenna Control Unit (ACU) model M1 completing TENA interface

- Remote monitoring and control of telemetry antenna system using TENA is undergoing operational testing

- To be used on Yuma TM pedestals

- Updated controller to be procured this year with Red Hat 6 Operating System
YPG initiated “RealTime TENA Adoption Plan” in 2013

- Initial phase successfully demonstrated passive pointing of telemetry antenna control system by real-time tracking system

Collaborative Adapter Development

- MPS-25 Radar Adapter
- TCS M1L Telemetry Antenna Control System Adapter
- Integrated Range Tracking System (IRTS) Adapter
- Plan to integrate Weibel radar Adapters and MRTE (Modular Real-Time Enterprise) Adapter
TENA Enabled TM Data at RTC

- Using TENA to pull real time TSPI data from the Smartronix Omega NeXT decom software
- Transporting the data via TENA using the Standard platform object model
- Using SIMDIS to display real time 3D moving map with the TENA plugin for SIMDIS
- Data Adapter Tool fuses other real time TSPI sources such as IMU and differential GPS
- Prototype Adapters and GUIs for TCS 600 antenna
Swarm Scoring
Project Description

UAV Flight and Sensor Control (Piccolo SDK)

Target Control

Cloudcap Piccolo Link

SeaCan

UAV Video / TSPI data collection

Target TSPI & formation data

Scoring Analysis (modified TerraSight)

UAV Video / TSPI data collection

UAV Scoring

Target Controller

New

Mod Existing

Existing
TENA at Joint Pacific Alaska Range Complex (JPARC)

- TENA enables JPARC to provide force-on-force (FOF) training capability that fully integrates and supports joint and coalition components for both air and ground training in live, virtual, and constructive (LVC) domains.

“TENA is the greatest thing that ever happened to us. We couldn’t be doing today with all these systems–and we couldn’t have all the participants that we do–if it weren’t for TENA”

Billy D. Smith
Chief of electronic combat training requirements for Red Flag at JPARC
Worldwide Use of TENA

TENA is used in 13 countries outside the US.
Joint Mission Environment Test Capability (JMETC)

Enterprise Infrastructure for testing like we fight

JMETC Summary:

<table>
<thead>
<tr>
<th>System of Systems Infrastructure</th>
<th>123 Govt. & Industry Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>239 Test Events FY07-FY17</td>
</tr>
<tr>
<td></td>
<td>92% Enterprise Reusability</td>
</tr>
<tr>
<td>Comon Integration Software</td>
<td>Suite of 56 Integration Tools</td>
</tr>
<tr>
<td>(Test & Training Enabling Architecture)</td>
<td>Runs on all DoD-approved</td>
</tr>
<tr>
<td></td>
<td>Operating System environments</td>
</tr>
<tr>
<td></td>
<td>(84 different variants)</td>
</tr>
<tr>
<td></td>
<td>Used in 13 partner nations</td>
</tr>
<tr>
<td>Customer Collaboration</td>
<td>9,000+ website user accounts</td>
</tr>
<tr>
<td>(Enables RDT&E Problem-Solving)</td>
<td>FY17</td>
</tr>
<tr>
<td></td>
<td>94,841 downloads in FY17</td>
</tr>
<tr>
<td>Subject Matter Expertise</td>
<td>11,325 Help Tickets Resolved</td>
</tr>
<tr>
<td></td>
<td>FY12-FY17</td>
</tr>
<tr>
<td></td>
<td>352 Lessons Learned & Shared</td>
</tr>
</tbody>
</table>

JMETC Mission:

- Optimize the DoD’s distributed system of systems test infrastructure
- Develop & maintain common software that eliminates stove-pipes
- Promote Inter-Service RDT&E collaboration through website services
- Provide expertise to rapidly design, setup, & execute tests
Goal: RDT&E Infrastructure aligned to National Defense Strategy

Infrastructure for Agile / Rapid Acquisition

- Assesments in Changing Conditions
- Multi-Level Analyses
- Decision Analytics

Result: shared knowledge informing decisions across system lifecycle

- Virtual Prototyping
- Predictive Maintenance and Upgrades
- Improved Planning / Rehearsal
- Operationally Realistic Test & Training
- Test & Evaluation in a Mission Context

- Immersive Simulations
- Immersive Environments
Summary

- TENA offers significant benefits to the range community
 - Common data standards, interfaces, communication software, and tools to improve interoperability, reuse, and long-term sustainability of range assets for reduced O&M

- TENA is the CTEIP architecture for future instrumentation, the JNTC architecture for Live integration, and an enabling technology for JMETC

- JMETC provides inter-range connectivity and supports the full spectrum of Joint testing, supporting many customers in many different Joint mission threads

- TENA and JMETC are:
 - Being built and evolved based on customer requirements
 - Partnering with Service activities and leveraging existing capabilities
 - Coordinating with JNTC to bridge test and training capabilities
 - Provide a forum for users to develop and expand the architecture

 - Next JMETC Tech Exchange (JTEX-05) Dec 9-12 in Hilton Charlotte University Place in Charlotte, North Carolina
Important Contact Information

- **TENA Website:** http://www.tena-sda.org
 - Download TENA Middleware
 - Submit Helpdesk Case (http://www.tena-sda.org/helpdesk)
 - Use for all questions about the Middleware

- **JMETC Program Office Contact:**
 - E-mail: jmetc-feedback@jmetc.org
 - Telephone: (571) 372-2699
 - JMETC Website: http://www.jmetc.org – under construction

- **TENA Feedback:** feedback@tena-sda.org
 - Provide technical feedback on TENA Architecture or Middleware
 - Ask technical questions regarding the TENA architecture or project
 - Provide responses to AMT action items
 - Request TENA training
Adapter Approach for Remote Operations

● What is an Adapter?
 ● A software module designed to wrap a particular system with a common system interface (with extensibility, when needed) to promote interoperability across different vendor implementations
 ● Adapter can be configured to be used as a stand-alone computer process, either running on the same computer as the existing system, or an adjacent computer
 ● Adaptor can also be configured to be used in-line with an existing system in a virtual network interface manner

● How are Adapters used?
 ● Remote operator GUI-based systems are developed according to the common interfaces presented by the adapters in order to break the tight coupling that often occurs with proprietary point-to-point solutions
 ● Operator systems are designed from the perspective of supporting the ability to efficiently switch between different sites and different vendor-based systems
 o Support overlapping operators, as well as supervisory monitoring
 o Identify remote operation fault conditions and promote proper operator procedural handling of these faults
 o Provide access to vendor specific remote access tools, when that level of access is available and required

● Additional Adapter Benefits
 ● Remote configuration of range instrumentation systems handled in a common manner, permitting the development of tools and infrastructure to minimize configuration problems
 ● Existing data collection capabilities can be used to capture configuration settings and operational status information related to the range instrumentation systems for either during event or post-event analysis
TENA Cybersecurity Activities

- Air Force Evaluated/Approved Product List (E/APL)
 - Software Certification for TENA Middleware Version 6.x
- Navy Application & Database Management System (DADMS)
 - Approved 6/27/2011
- Army Certificate of Networthiness (CoN)
 - Covers TENA Middleware, TENA Utilities, and TENA-enabled applications
- S/DREN (Secret/Defense Research and Engineering Network)
 - TENA protocol and TENA-based applications approved for DREN and SDREN sites
- NIPRnet
 - JTTOCC (which includes TENA Middleware) obtained ATO on NIPRnet
- Air Force 46th Test Wing DIACAP
 - InterTEC tool suite (includes TENA Middleware) completed DIACAP testing, ATO submission in process
- DoD PPSMO Category Assurance List (CAL)
 - Conditional approval for TENA use on classified and unclassified network enclave, awaiting final approval
- Unified Cross Domain Management Office (UCDMO)
 - TENA-enabled Cross Domain trusted guard SimShield v2.2.0.1 on baseline list
- Joint RDT&E Reciprocity Overlay Team (JRROT)
 - Foundational set of controls for basing reciprocity determinations for RDT&E

TENA project works with IA organizations to reduce cost and delays to improve IA considerations with TENA applications
VISION: Live-Virtual-Constructive (LVC) Test Environment with TENA and JMETC

CROSS DOMAIN OPERATIONS

Programs of Record (e.g., F-35)

Tactical Network Emulation

Virtual & Constructive Red & Blue System Simulations

Mission Based Scenarios

System Integration

Test Support Network

Distributed Data Collection

Cloud Services

Common Tools

Standard Processes and Repositories

TENA Solutions

TENA Middleware

Protocol Translators

System Adaptors

Gateways

Range Protocols

High Level Architecture

Distributed Interactive Simulation

METC Networks

JTEN

JIOR

Cross Domain Solutions

Virtualization

Massively Parallel Processing

Big Data Storage

Big Data Analytics

PRE-EVENT Planning

EVENT Monitoring, Management, Control

MOP Framework

Information Assurance

VV&A

Configuration Management

Security

POST-EVENT Data Reduction, Analysis, Visualization